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Abstract
The temporal evolution of quantum statistical properties of an interacting atom–
radiation field system in the presence of a classical homogeneous gravitational
field is investigated within the framework of the Jaynes–Cummings model.
To analyse the dynamical evolution of the atom–radiation system a quantum
treatment of the internal and external dynamics of the atom is presented based on
an alternative su(2) dynamical algebraic structure. By solving the Schrödinger
equation in the interaction picture, the evolving state of the system is found by
which the influence of the gravitational field on the dynamical behaviour of the
atom–radiation system is explored. Assuming that initially the radiation field is
prepared in a coherent state and the two-level atom is in a coherent superposition
of the excited and ground states, the influence of gravity on the collapses and
revivals of the atomic population inversion, atomic dipole squeezing, atomic
momentum diffusion, photon counting statistics and quadrature squeezing of
the radiation field is studied.

PACS numbers: 42.50.Vk, 42.50.Dv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The interaction between a two-level atom and a single quantized mode of the electromagnetic
field in a lossless cavity within the rotating wave approximation (RWA) can be described
by the Jaynes–Cummings model (JCM) [1]. Despite being simple enough to be analytically
soluble in the RWA, this model has been a long-lasting source of insight into the nuances
of the interaction between light and matter. The JCM has been applied to investigate many
quantum effects such as the quantum collapses and revivals of atomic inversion [2], squeezing
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of the radiation field [3], atomic dipole squeezing [4], vacuum Rabi oscillation [5] and the
dynamical entangling and disentangling of the atom–field system in the course of time [6–8].
Investigations of the dynamical behaviour of the JCM are also extremely important due to
its experimental realizations in high-Q microwave cavities [9], in optical resonators [10], in
laser-cooled trapped ions [11] and in quantum nondemolition measurements [12]. Stimulated
by the success of the JCM, more and more people have paid special attention to extending
and generalizing the model in order to explore new quantum effects. Discussions related to
several interesting generalizations of this model are now available in the literature [13] and
the model is still promising in many applications, particularly in the fast developing research
area of quantum information [14].

A very significant and noteworthy generalization of the JCM is to include the effect of
atomic motion so that the spatial mode structure could be incorporated into this model. In the
standard JCM, the interaction between a constant electric field and a stationary (motionless)
two-level atom is considered. With the development in the technologies of laser cooling and
atom trapping the interaction between a moving atom and the field has attracted much attention
[15–24]. In particular, it has been shown that the atomic motion can bring about the nonlinear
transient effects similar to self-induced transparency (SIT) and adiabatic following (AF) [25];
the possibility of realizing an optical switching [24] changes the creating time of Schrödinger
cat states [21] and exhibits long time entropy squeezing effect [23].

On the other hand, experimentally, atomic beams with very low velocities are generated
in laser cooling and atomic interferometry [26]. It is obvious that for atoms moving with a
velocity of a few millimetres or centimetres per second for a time period of several milliseconds
or more, the influence of Earth’s acceleration becomes important and cannot be neglected [27].
For this reason, it is of interest to study the temporal evolution of a moving atom simultaneously
exposed to the gravitational field and a single-mode travelling wave field. Since any quantum
optical experiment in the laboratory is actually made in a non-inertial frame it is important to
estimate the influence of Earth’s acceleration on the outcome of the experiment. To get a clear
picture of what is going to happen it may be useful to refer to the equivalence principle. It
states that the influence of a homogeneous gravitational field on the atom moving in a radiation
field can be simulated by constant acceleration. This means that the following situation is
physically equivalent to the atom–radiation system exposed to a gravity field: an atom is at
rest or moving with constant velocity relative to an inertial system. The laboratory with the
radiation field attached to it moves with a constant acceleration. The consequence is that the
radiation field reaches the atom with Doppler shifted frequency. Because of the acceleration
this shift changes in time. It acts as a time-dependent detuning. A semiclassical description
of a two-level atom interacting with a classical running laser wave in a gravitational field has
been studied [28, 29]. However, the semiclassical treatment does not permit us to study the
pure quantum effects occurring in the course of atom–radiation interaction. Recently, within
a quantum treatment of the internal and external dynamics of the atom, we have presented
[30] a theoretical scheme based on an su(2) dynamical algebraic structure to investigate the
influence of a classical homogeneous gravity field on the quantum nondemolition measurement
of atomic momentum in the dispersive JCM.

In this paper we adopt a dynamical algebraic approach to investigate the temporal
evolution of quantum statistical properties of the JCM in the presence of a classical
homogeneous gravitational field. In the Jaynes–Cummings model, when the atomic motion
is in a propagating light wave, we consider a two-level atom interacting with the quantized
cavity field in the presence of a homogeneous gravitational field. By solving the Schrödinger
equation in the interaction picture, the evolving state of the system is found by which the
influence of the gravitational field on the dynamical behaviour of the atom–field system is
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explored. In section 2, we present a quantum treatment of the internal and external dynamics
of the atom with an alternative su(2) dynamical algebraic structure within the system. Based
on this su(2) structure and in the interaction picture, we obtain an effective Hamiltonian
describing the atom–field interaction in the presence of a classical gravity field. In section 3,
we investigate the dynamical evolution of the system and show that how the gravitational
field may affect the dynamical properties of the JCM. In section 4, we study the influence of
gravitational field on both the cavity field and the atomic properties. Considering the field to
be initially in a coherent state and the two-level atom in a coherent superposition of the ground
and excited states, we investigate the temporal evolution of the atomic inversion, atomic dipole
squeezing, atomic momentum diffusion, probability distribution of the cavity field, photon
counting statistics and quadrature squeezing of the radiation field. Finally, we summarize our
conclusions in section 5.

2. Jaynes–Cummings model in the presence of a gravitational field

The system we consider here is a moving two-level atom of mass M exposed simultaneously to
a single-mode travelling wave field and a classical homogeneous gravitational field. Therefore,
the Hamiltonian of the atom–field system in the presence of a gravitational field with the atomic
motion along the position vector �̂x and in the RWA is given by

Ĥ = p̂2

2M
− M �g · �̂x + h̄ωc

(
â†â +

1

2

)
+

1

2
h̄ωegσ̂ z + h̄λ[exp(−i �q · �̂x)â†σ̂− + exp(i �q · �̂x)σ̂ +â],

(1)

where â and â† denote, respectively, the annihilation and creation operators of a single-mode
travelling wave with frequency ωc, �q is the wave vector of the running wave and σ̂± denote
the raising and lowering operators of the two-level atom with electronic levels |e〉, |g〉 and
Bohr transition frequency ωeg . The atom–field coupling is given by the parameter λ and
�̂p, �̂x denote, respectively, the momentum and position operators of the atomic centre of mass
motion and g is Earth’s gravitational acceleration. It has been shown [30] that based on an
su(2) algebraic structure, as the dynamical symmetry group of the model, the Hamiltonian (1)
can be transformed to the following effective Hamiltonian,

ˆ̃H = p̂2

2M
− h̄�̂( �̂p, �g)Ŝ0 +

1

2
Mg2t2 + �̂p · �gt + h̄(κ̂(t)

√
K̂Ŝ− + κ̂∗(t)

√
K̂Ŝ+), (2)

where κ̂(t) is an effective coupling coefficient

κ̂(t) = λ exp

(
it

2

(
�̂( �̂p, �g) +

h̄q2

M

))
. (3)

The operators

Ŝ0 = 1

2
(|e〉〈e| − |g〉〈g|), Ŝ+ = â|e〉〈g| 1√

K̂
, Ŝ− = 1√

K̂
|g〉〈e|â†, (4)

with the following commutation relations,

[Ŝ0, Ŝ±] = ±Ŝ±, [Ŝ−, Ŝ+] = −2Ŝ0, (5)

are the generators of the su(2) algebra, the operator K̂ = â†â + |e〉〈e| is a constant of motion
which represents the total number of excitations of the atom–radiation system, and the operator

�̂( �̂p, �g) = ωc −
(

ωeg +
�q · �̂p
M

+ �q · �gt +
h̄q2

2M

)
, (6)
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has been introduced as the Doppler shift detuning at time t [30]. The Hamiltonian (2) has
the form of the Hamiltonian of the JCM, the only modification being the dependence of the
detuning on the conjugate momentum and the gravitational field. In the interaction picture the
effective Hamiltonian (2) takes the following form,

ˆ̃H int = exp

(
−i ˆ̃H 0t

h̄

)
ˆ̃HI exp

(
i ˆ̃H 0t

h̄

)
, (7)

where
ˆ̃H 0 = −h̄�̂( �̂p, �g)Ŝ0 + Ĥ ( �̂p, �g), (8)

and
ˆ̃HI = h̄(κ

√
K̂Ŝ− + κ∗

√
K̂Ŝ+), (9)

with

Ĥ ( �̂p, �g) = p̂2

2M
+ �̂p · �gt +

1

2
Mg2t2. (10)

Therefore we obtain
ˆ̃H int = h̄(κ̂(t)

√
K̂Ŝ− exp(−it�̂( �̂p, �g)) + κ̂∗(t)

√
K̂Ŝ+ exp(it�̂( �̂p, �g))). (11)

Finally by using equation (3) we arrive at

ˆ̃H int = h̄λ(
√

K̂Ŝ− exp(−it�̂1( �̂p, �g, t)) +
√

K̂Ŝ+ exp(it�̂1( �̂p, �g, t))). (12)

where

�̂1( �̂p, �g, t) = 1

2

(
ωc−

(
ωeg +

�q · �̂p
M

+ �q · �gt + 3
h̄q2

2M

))
, (13)

is the detuning of the atom–field interaction which depends on both the atomic momentum
and the gravitational field.

3. Dynamical evolution

In section 2, we obtained an effective Hamiltonian for the atom–field system in the presence
of a classical homogeneous gravitational field in the interaction picture. In this section, we
investigate dynamical evolution of the system. We will show how the gravitational field may
affect the quantum dynamics of the JCM. For this purpose, we solve the Schrödinger equation

ih̄
∂|ψ(t)〉

∂t
= ˆ̃H int|ψ(t)〉, (14)

for the state vector |ψ(t)〉 with Hamiltonian (12). Indeed, the two-level atom with momentum
| �p〉 in the excited state |e〉 gets annihilated and creates a field excitation. Therefore, the
Hamiltonian ˆ̃H int transforms the state |e〉 ⊗ |n〉 ⊗ | �p〉 ≡ |e, n〉 ⊗ | �p〉, where |n〉 denotes the
nth Fock state of the field, into

ˆ̃H int|e, n〉 ⊗ | �p〉 = h̄λ
√

n + 1 exp(−it�̂1( �p, �g, t))|g, n + 1〉 ⊗ | �p〉, (15)

in which we have used the relations√
K̂Ŝ−|e, n〉 =

√
n + 1|g, n + 1〉, �̂p| �p〉 = �p| �p〉. (16)

Similarly, the atom with momentum | �p〉 in the ground state |g〉 gets excited at the
expense of annihilation a field excitation. Hence, the Hamiltonian transforms the state
|g〉 ⊗ |n + 1〉 ⊗ | �p〉 ≡ |g, n + 1〉 ⊗ | �p〉 into

ˆ̃H int|g, n + 1〉 ⊗ | �p〉 = h̄λ
√

n + 1 exp(it�̂1( �p, �g, t))|e, n〉 ⊗ | �p〉. (17)
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Since the Hamiltonian couples only the states |g, n + 1〉 ⊗ | �p〉 and |e, n〉 ⊗ | �p〉 we introduce
the state vector

|ψ(t)〉 =
∫

d3p
∑
n=0

(ψe,n( �p, �g, t)|e, n〉 ⊗ | �p〉 + ψg,n+1( �p, �g, t)|g, n + 1〉 ⊗ | �p〉)

+
∫

d3pψg,0( �p, t)|g, 0〉 ⊗ | �p〉. (18)

The state |g, 0〉, which corresponds to n = −1 in equation (17), plays a special role. According
to equation (17) we find ˆ̃H int|g, 0〉 = 0 which means, the vacuum cannot excite an atom initially
in the ground state and therefore, the state |g, 0〉 decouples from the rest of the states.

Now we find the equations of motion for the time-dependent probability amplitudes
ψe,n( �p, �g, t) ≡ ψ1, ψg,n+1( �p, �g, t) ≡ ψ2 by substituting (18) into (14) and making use of
equations (15) and (17)

ψ̇1 = −iλ
√

n + 1 exp(i�1( �p, �g, t)t)ψ2, (19)

and

ψ̇2 = −iλ
√

n + 1 exp(−i�1( �p, �g, t)t)ψ1. (20)

At time t = 0 the atom is uncorrelated with the field and the state vector of the system can be
written as a direct product

|ψ(t = 0)〉 = |ψc.m(0)〉 ⊗ |ψatom(0)〉 ⊗ |ψfield(0)〉

=
(∫

d3pφ( �p)| �p〉) ⊗ (ce|e〉 + cg|g〉
)

⊗
(∑

n=0

wn|n〉
)

, (21)

where we have assumed that initially the field is in a coherent superposition of Fock states,
the atom is in a coherent superposition of its excited and ground states, and the state vector
for the centre-of-mass degree of freedom is |ψc.m(0)〉 = ∫

d3pφ( �p)| �p〉. In notation (17) the
initial state (21) reads

|ψ(t = 0)〉 =
∫

d3p
∑
n=0

(wnceφ( �p)|e, n〉 ⊗ | �p〉 + wn+1cgφ( �p)|g, n + 1〉 ⊗ | �p〉)

+
∫

d3pw0φ( �p)cg|g, 0〉 ⊗ | �p〉. (22)

When we compare (22) with (18) we find the following initial conditions:

ψ1(t = 0) = wnceφ( �p), ψ2(t = 0) = wn+1cgφ( �p), ψg,0(t = 0) = w0cgφ( �p).

(23)

We can solve two coupled first-order differential equations (19) and (20) in a straightforward
way. We have

∂2ψ1

∂t2
+ 2i �q · �g

(
t − �0

2 �q · �g
)

∂ψ1

∂t
+ λ2(n + 1)ψ1 = 0, (24)

and

∂2ψ2

∂t2
− 2i �q · �g

(
t − �0

2 �q · �g
)

∂ψ2

∂t
+ λ2(n + 1)ψ2 = 0, (25)

where

�0( �p) = 1

2

[
ωc −

(
ωeg +

�q · �p
M

+ 3
h̄q2

2M

)]
(26)
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is time-independent. The exact solutions of equations (24) and (25) read as, respectively,

ψ1(t) = exp(i�1t)

(
C(1)H(An, Bt ) + C(2) 1F1

(
−An,

1

2
;B2

t

))
, (27)

and

ψ2(t) = C(1)H(An + 1, Bt ) + C(2) 1F1

(
−1

2
(An + 1),

1

2
;B2

t

)
, (28)

where by definition C(1) ≡ C1
C

, C(2) ≡ C2
C

with

C1 = ψ1(0) 1F1

(
−1

2
(An + 1),

1

2
; (−D)2

)
− ψ2(0) 1F1

(
−An,

1

2
; (−D)2

)
, (29)

C2 = ψ1(0)H(An + 1,−D) − ψ2(0)H(An,−D), (30)

C = H(An,−D) 1F1

(
−1

2
(An + 1),

1

2
; (−D)2

)
− H(An + 1,−D) 1F1

(
−An,

1

2
; (−D)2

)
,

(31)

and H, 1F1 denote, respectively, the Hermite and the confluent hypergeometric functions.
Furthermore, we have

An = −(2 + iβ), β = 	n( �p, �g) − 
2
0

2 �q · �g , (32)

and

Bt = (γ t − η)(1 + i), D = η(1 + i), γ =
√

2

2
�q · �g, η =

√
2
0

4
√ �q · �g . (33)

We also define

	n( �p, �g) =
√

	n( �p, 0)2 + 2i �q · �g, (34)

with 	n( �p, 0)2 = λ2(n + 1) + �2
0 as the gravity-dependent Rabi frequency. Here, we should

mention that our effective description of the model under consideration involves a certain
approximation and that the solution of the Schrödinger equation is not an exact analytical
solution of the total model. Namely, the approximation is that of a large detuning between
the transition frequency of the atom and the frequency of the field mode, implying that real
transitions between the atomic levels are neglected and that only virtual transitions are taken
into account.

4. Dynamical properties of the model

In this section, we study the influence of the classical gravity field on the quantum statistical
properties of the two-level atom and the quantized radiation field.

4.1. Atomic inversion

An important quantity is the atomic population inversion which is expressed by the expression

W(t) = 〈ψ(t)|σ̂z|ψ(t)〉. (35)

By using the atom–field state |ψ(t)〉 given by (18) we obtain

W(t) =
∫

d3p
∑
n=0

[|ψ1|2 − |ψ2|2]. (36)
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(a)

(c)

(b)

Figure 1. Time evolution of the atomic population inversion versus the scaled time λt . Here
we have set q = 107 m−1, M = 10−26 kg, g = 9.8 m s−2, ωrec = 0.5 × 106 rad s−1, λ = 1 ×
106 rad s−1, �0 = 8.5 × 107 rad s−1, ϕ = 0, α = 2, 
 = 1.8 × 106 rad s−1 and ce = cg = 1√

2

with coherent state for initial cavity field: (a) for �q · �g = 0, (b) for �q · �g = 0.5 × 107, (c) for
�q · �g = 1.5 × 107.

Therefore, by substituting from (27) and (28) into (36) we have

W(t) =
∫

d3p

∞∑
n=0

{
|C1|2[|H(An, Bt )|2 − |H(An + 1, Bt )|2] + |C2|2

[ ∣∣∣∣1F1

(
−An,

1

2
;B2

t

)∣∣∣∣
2

−
∣∣∣∣1F1

(
−1

2
(An + 1

)
,

1

2
;B2

t

∣∣∣∣
2 ]

+ 2Re

[
C1C

∗
2

(
H(An + 1, Bt ) 1F

∗
1

(
−An,

1

2
;B2

t

)

− H(An + 1, Bt ) 1F
∗
1

(
−1

2
(An + 1),

1

2
;B2

t

))]}
, (37)

where according to (29), (30), (32) and (33), C(1), C(2), An and Bt are functions of �p. We
assume at t = 0, the two-level atom is in a coherent superposition of the excited state and the
ground state with cg(0) = 1√

2
, ce(0) = 1√

2
. We now consider the influence of gravity on the

evolution of atomic population inversion when at t = 0, the cavity field is prepared in a Glauber

coherent state, wn(0) = exp(− |α|2
2 )αn

√
n!

. In figure 1 we have plotted the atomic population inversion
as a function of the scaled time λt for three values of the parameter �q · �g. In this figure and all
the subsequent figures we set q = 107 m−1, M = 10−26 kg, g = 9.8 m s−2, ωrec = h̄q2

2M
= 0.5×

106 rad s−1, λ = 1 × 106 rad s−1, �0 = 8.5 × 107 rad s−1, α = 2,
 = 1.8 × 106 rad s−1

and φ( �p) = 1√
2πσ0

exp
(−p2

σ 2
0

)
with σ0 = 1 [28–32]. Here, it is necessary to point out that the

relevant time scale introduced by the gravitational influence is τa = 1√
�q· �g [30]. Therefore

for an optical field with | �q| = 107 m−1, τa is about 10−4 s. In figure 1(a) we consider small
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gravitational influence. This means very small �q · �g, i.e., the momentum transfer from the laser
beam to the atom is only slightly altered by the gravitational acceleration because the latter is
very small or nearly perpendicular to the laser beam. In figures 1(b) and (c) we consider the
gravitational influence for �q · �g = 0.5×107 and �q · �g = 1.5×107, respectively. By comparing
figures 1(a), (b) and (c) we can see the influence of gravity on the time evolution of the
atomic population inversion. As is seen from figure 1(a) for the atomic population inversion
the Rabi-like oscillations can be identified. With the increasing value of the parameter �q · �g
(see figures 1(b) and (c)) the Rabi oscillations of the atomic population inversion disappear.
We calculate the first revival and collapse times and we show that with the increasing value of
the parameter �q · �g, the first revival and collapse times become greater. An estimate of tc and
tr can be obtained from the conditions

(|	〈n〉+√〈n〉| − |	〈n〉−√〈n〉|)tc ∼ 1, (38)

and

(|	〈n〉| − |	〈n〉−1|)tr ∼ 2mπ (m = 1, 2, 3, . . .), (39)

and from (34) we have

|	n| = (
c2
n + d2

) 1
4 , (40)

where

cn = �2
0 + λ2(n + 1), d = 2 �q · �g. (41)

Therefore, we obtain the collapse and revival times as

tc = 1

(r1c − r2c)
, tr = 2mπ

(r1r − r2r )
, (42)

where

r1c = (
c2
〈n〉+√〈n〉 + d2

) 1
4 , r2c = (

c2
〈n〉−√〈n〉 + d2

) 1
4 , (43)

and

r1r = (
c2
〈n〉 + d2

) 1
4 , r2r = (

c2
〈n〉−1 + d2

) 1
4 . (44)

As an example, for the values used in the numerical plots of figure 1 we obtain some of
the corresponding first revival and collapse times. We obtain λtr = 3.4, 3.5 and 3.7 and
λtc = 0.87, 0.88 and 0.94 for the values �q · �g = 0, �q · �g = 0.5 × 107 and �q · �g = 1.5 × 107,
respectively. As is seen, with the increasing value of the parameter �q · �g, the first revival and
collapse times become greater.

4.2. Atomic dipole squeezing

To analyse the quantum fluctuations of atomic dipole variables and examine their squeezing
we consider the two slowly varying Hermitian quadrature operators

σ̂ 1 = 1
2 (σ̂ + exp(−iωegt) + σ̂− exp(iωegt)), (45)

and

σ̂ 2 = 1

2i
(σ̂ + exp(−iωegt) − σ̂− exp(iωegt)). (46)

In fact σ̂ 1 and σ̂ 2 correspond to the dispersive and absorptive components of the amplitude of
the atomic polarization [2], respectively. They obey the commutation relation [σ̂ 1, σ̂ 2] = i

2 σ̂ 3.
Correspondingly, the Heisenberg uncertainty relation is

(
σ̂ 1)
2(
σ̂ 2)

2 � 1
16 |〈σ̂ 3〉|2, (47)

where (
σ̂ i)
2 = 〈

σ̂ 2
i

〉 − 〈σ̂ i〉2 is the variance in the component σ̂ i (i = 1, 2) of the atomic
dipole.
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The fluctuations in the component σ̂ i (i = 1, 2) are said to be squeezed (i.e., dipole
squeezing) if the variance in σ̂ i satisfies the condition

(
σ̂ i)
2 < 1

4 |〈σ̂ 3〉|, (i = 1 or 2). (48)

Since σ̂ 2
i = 1

4 this condition may be written as

Fi = 1 − 4〈σ̂ i〉2 − |〈σ̂ 3〉| < 0, (i = 1 or 2). (49)

The expectation values of the atomic operators σ̂ 1 and σ̂ 2 in the state |ψ(t)〉 of the atom–field
system, given by (18), are

〈σ̂ 1〉 =
∫

d3p

∞∑
n=0

Re[ψ1(t)ψ
∗
2 (t) exp(−iωegt)], (50)

and

〈σ̂ 2〉 =
∫

d3p

∞∑
n=0

Im[ψ1(t)ψ
∗
2 (t) exp(−iωegt)]. (51)

Therefore, by substituting from (27) and (28) into (50) and (51) we have

〈σ̂ 1〉 =
∫

d3p

∞∑
n=0

Re

[(
exp(i�1t)

(
C(1)H(An, Bt )

+ C(2) 1F1

(
−An,

1

2
;B2

t

)))(
C∗(1)H ∗(An + 1, Bt )

+ C∗(2) 1F
∗
1

(
−1

2
(An + 1),

1

2
;B2

t

))
exp(−iωegt)

]
, (52)

and

〈σ̂ 2〉 =
∫

d3p

∞∑
n=0

Im

[(
exp(i�1t)

(
C(1)H(An, Bt )

+ C(2) 1F1

(
−An,

1

2
;B2

t

)))(
C∗(1)H ∗(An + 1, Bt )

+ C∗(2) 1F
∗
1

(
−1

2
(An + 1),

1

2
;B2

t

))
exp(−iωegt)

]
. (53)

The time evolution of F1(t) corresponding to the squeezing of σ̂ 1 has been shown in figure 2
for three values of the parameter �q · �g. As it is seen, with the increasing value of the parameter
�q · �g the dipole squeezing is completely removed.

4.3. Atomic momentum diffusion

The next quantity we consider is the atomic momentum diffusion. As a consequence of
the atomic momentum diffusion, the atom experiences light-induced forces (radiation force)
during its interaction with the radiation field. The atomic momentum diffusion is given by


p(t) = (〈p̂(t)2〉 − 〈p̂(t)〉2)
1
2 . (54)

By using (18) and p̂|p〉 = p|p〉, we obtain


p(t) =



[ ∞∑
n=0

∫
d3pp2(|ψ1|2 + |ψ2|2)

]
−

[ ∞∑
n=0

∫
d3pp(|ψ1|2 + |ψ2|2)

]2



1
2

. (55)
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(a)

(c)

(b)

Figure 2. Time evolution of the atomic dipole squeezing versus the scaled time λt with the
same corresponding data used in figure 1: (a) for �q · �g = 0, (b) for �q · �g = 0.5 × 107, (c) for
�q · �g = 1.5 × 107.

By substituting (27) and (28) into (55) we obtain


p(t) =
{[ ∞∑

n=0

∫
d3pp2

({
|C1|2[|H(An, Bt )|2 + |H(An + 1, Bt )|2]

+ |C2|2
[ ∣∣∣∣ 1F1

(
−An,

1

2
;B2

t

)∣∣∣∣
2

+

∣∣∣∣1F1

(
−1

2
(An + 1),

1

2
;B2

t

∣∣∣∣
2 ]

+ 2Re

[
C1C

∗
2

(
H(An + 1, Bt ) 1F

∗
1

(
−An,

1

2
;B2

t

)
+ H(An + 1, Bt )

× 1F
∗
1

(
−1

2
(An + 1),

1

2
;B2

t

))]})]
−

[ ∞∑
n=0

∫
d3pp

({
|C1|2

[
|H(An, Bt )|2

+ |H(An + 1, Bt )|2
]

+ |C2|2
[ ∣∣∣∣ 1F1

(
−An,

1

2
;B2

t

)∣∣∣∣
2

+

∣∣∣∣1F1

(
−1

2
(An + 1),

1

2
;B2

t

∣∣∣∣
2 ]

+ 2Re

[
C1C

∗
2 (H(An + 1, Bt )

× 1F
∗
1

(
−An,

1

2
;B2

t

)
+ H(An + 1, Bt ) 1F

∗
1

(
−1

2
(An + 1),

1

2
;B2

t

))]})]2} 1
2

.

(56)

In figure 3 we have plotted 
p(t) for �q · �g = 0, �q · �g = 0.5 × 107 and �q · �g = 1.5 × 107,
respectively. In figure 3(a) the Rabi-like oscillations can be identified, but in figures 3(b)
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(a) (b)

(c)

Figure 3. Time evolution of the atomic momentum diffusion versus the scaled time λt with the
same corresponding data used in figure 1: (a) for �q · �g = 0, (b) for �q · �g = 0.5 × 107, (c) for
�q · �g = 1.5 × 107.

and (c), when the influence of the gravitational field increases, the Rabi oscillations disappear.
Moreover, the atom can experience larger light-induced forces during its interaction with the
radiation field, when the gravitational field increases.

4.4. The probability distribution of the cavity field

The probability distribution function P(n, t) that there are n photons in the cavity field at time
t is given by

P(n, t) = |〈n|ψ(t)〉|2. (57)

By using the expressions (18), (27) and (28) we have

P(n, t) =
∫

d3p[|ψ1(t)|2 + |ψ2(t)|2]. (58)

Therefore, we obtain

P(n, t) =
∫

d3p

{
|C1|2[|H(An, Bt )|2 + |H(An + 1, Bt )|2]

+ |C2|2
[∣∣∣∣ 1F1

(
−An,

1

2
;B2

t

)∣∣∣∣
2

+

∣∣∣∣1F1

(
−1

2
(An + 1),

1

2
;B2

t

∣∣∣∣
2
]

+ 2Re

[
C1C

∗
2

(
H(An + 1, Bt ) 1F

∗
1

(
−An,

1

2
;B2

t

)

+ H(An + 1, Bt ) 1F
∗
1

(
−1

2
(An + 1),

1

2
;B2

t

))]}
. (59)
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(a) (b)

(c)

Figure 4. The three-dimensional plot of the probability distribution function P(n, t) versus the
scaled time λt and n with the same corresponding data used in figure 1: (a) for �q · �g = 0, (b) for
�q · �g = 0.5 × 107, (c) for �q · �g = 1.5 × 107.

In figure 4 we have shown the three-dimensional plot of the probability distribution of the
cavity field P(n, t) with the same corresponding data used in figure 1 with α = 2. By
comparing figures 4(a), (b) and (c) we can see that the multi-peak structure of P(n, t) is
destroyed with increase of the parameter �q · �g. This result can be considered as a first evidence
for the suppression of nonclassical behaviour of the cavity field in the presence of gravity.

4.5. Photon counting statistics

We now investigate the influence of gravity on the sub-Poissonian statistics of the radiation
field. For this purpose, we calculate the Mandel parameter defined by [33]

Q(t) = (〈n(t)2〉 − 〈n(t)〉2)

〈n(t)〉 − 1. (60)

For Q < 0 (Q > 0), the statistics is sub-Poissonian (super-Poissonian); Q = 0 stands for
Poissonian statistic. Since 〈n(t)〉 = ∑∞

n=0 nP (n, t) and 〈n(t)2〉 = ∑∞
n=0 n2P(n, t) we have

Q(t) =






[ ∞∑
n=0

∫
d3pn2P(n, t)

]
−

[ ∞∑
n=0

∫
d3pnP (n, t)

]2



[ ∞∑
n=0

∫
d3pnP (n, t)

]−1

−1.

(61)
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Therefore, by using (59), (60) and (61) we obtain

Q(t) =
({[ ∞∑

n=0

∫
d3pn2

({
|C1|2[|H(An, Bt )|2 + |H(An + 1, Bt )|2]

+ |C2|2
[∣∣∣∣ 1F1

(
−An,

1

2
;B2

t

)∣∣∣∣
2

+

∣∣∣∣1F1

(
−1

2
(An + 1),

1

2
;B2

t

∣∣∣∣
2]

+ 2Re

[
C1C

∗
2 (H(An + 1, Bt ) 1F

∗
1

(
−An,

1

2
;B2

t

)

+ H(An + 1, Bt ) 1F
∗
1

(
−1

2
(An + 1),

1

2
;B2

t

))]})]

−
[ ∞∑

n=0

∫
d3pn

({
|C1|2[|H(An, Bt )|2 + |H(An + 1, Bt )|2]

+ |C2|2
[∣∣∣∣ 1F1

(
−An,

1

2
;B2

t

)∣∣∣∣
2

+

∣∣∣∣1F1

(
−1

2
(An + 1),

1

2
;B2

t

∣∣∣∣
2]

+ 2Re

[
C1C

∗
2

(
H(An + 1, Bt ) 1F

∗
1

(
− An,

1

2
;B2

t

)

+ H(An + 1, Bt ) 1F
∗
1

(
−1

2
(An + 1),

1

2
;B2

t

))]})]2}

−
[ ∞∑

n=0

∫
d3pn

({
|C1|2[|H(An, Bt )|2 + |H(An + 1, Bt )|2]

+ |C2|2
[∣∣∣∣ 1F1

(
−An,

1

2
;B2

t

)∣∣∣∣
2

+

∣∣∣∣1F1

(
−1

2
(An + 1),

1

2
;B2

t

∣∣∣∣
2]

+ 2Re

[
C1C

∗
2 (H(An + 1, Bt ) 1F

∗
1

(
−An,

1

2
;B2

t

)

+ H(An + 1, Bt ) 1F
∗
1

(
−1

2
(An + 1),

1

2
;B2

t

))]})]−1)
− 1. (62)

The numerical results for three values of the parameter �q · �g are shown in figure 5 for the Mandel
parameter. As it is seen, the field exhibits alternately sub-Poissonian and super-Poissonian
statistics when the influence of the gravitational field is negligible. With increasing �q · �g
the sub-Poissonian characteristic is suppressed and the cavity field exhibits super-Poissonian
statistics.

4.6. Quadrature squeezing of the cavity field

Finally, we investigate the influence of gravity on the quadrature squeezing of the radiation
field. For this purpose, we introduce two slowly varying quadrature operators

X̂1(t) = 1
2 (â exp(iωt) + â† exp(−iωt)), (63)

and

X̂2(t) = 1

2i
(â exp(iωt) − â†(−iωt)), (64)

where â and â† obey the commutation relation [â, â†] = 1. The operators X̂1(t) and X̂2(t)

satisfy the commutation relation

[X̂1(t), X̂2(t)] = i

2
, (65)
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(a)

(c)

(b)

Figure 5. Time evolution of the Mandel parameter Q(t) versus the scaled time λt with the
same corresponding data used in figure 1: (a) for �q · �g = 0, (b) for �q · �g = 0.5 × 107, (c) for
�q · �g = 1.5 × 107.

which implies the Heisenberg uncertainty relation

〈(�X̂1(t))
2〉〈(�X̂2(t))

2〉 � 1
16 . (66)

A state of the radiation field is said to be squeezed whenever

〈(�X̂i)
2〉 < 1

4 , (i = 1 or 2), (67)

where

〈(�X̂i)
2〉 = 〈

X̂2
i

〉 − 〈
X̂i

〉2
, (i = 1, 2). (68)

The degree of squeezing can be measured by the squeezing parameter Si, (i = 1, 2) defined
by

Si(t) = 4〈(�X̂i(t))
2〉 − 1, (69)

which can be expressed in terms of the annihilation and creation operators, â and â† as follows

S1(t) = (〈â2(t)〉 − 〈â(t)〉2) exp(2iωt) + (〈â†2(t)〉 − 〈â†(t)〉2)

× exp(−2iωt) + 2(〈â†(t)â(t)〉 − 〈â†(t)〉〈â(t)〉), (70)

and

S2(t) = −(〈â2(t)〉 − 〈â(t)〉2) exp(2iωt) − (〈â†2( �p, t)〉 − 〈â†(t)〉2)

× exp(−2iωt) + 2(〈â†(t)â(t)〉 − 〈â†(t)〉〈â(t)〉). (71)

Then, the condition for squeezing in the quadrature component can be simply written as
Si(t) < 0. By using (18), (27) and (28) we obtain
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(a) (b)

(c)

Figure 6. Time evolution of the squeezing parameter S1(t) versus the scaled time λt with the
same corresponding data used in figure 1: (a) for �q · �g = 0, (b) for �q · �g = 0.5 × 107, (c) for
�q · �g = 1.5 × 107.

〈â(t)〉 =
∞∑

n=0

∫
d3p(

√
nψ1nψ

∗
1(n−1) +

√
n + 1ψ2nψ

∗
2(n−1)), (72)

〈â†(t)〉 =
∞∑

n=0

∫
d3p(

√
n + 1ψ1nψ

∗
1(n+1) +

√
n + 2ψ2nψ

∗
2(n+1)), (73)

〈â2(t)〉 =
∞∑

n=0

∫
d3p(

√
n(n − 1)ψ1nψ

∗
1(n−2) +

√
n(n + 1)ψ2nψ

∗
2(n−2)), (74)

〈â†2(t)〉 =
∞∑

n=0

∫
d3p(

√
(n + 1)(n + 2)ψ1nψ

∗
1(n+2) +

√
(n + 2)(n + 3)ψ2nψ

∗
2(n+3)), (75)

with

〈â†(t)â(t)〉 =
∞∑

n=0

∫
d3p(nψ1nψ

∗
1n + (n + 1)ψ2nψ

∗
2(n−1)). (76)

In figure 6 we have plotted the squeezing parameter S1 versus the scaled time λt for three
values of the parameter �q · �g. As it is seen, the quadrature component X̂1 exhibits squeezing
in the course of time evolution when the influence of the gravitational field is negligible. With
increase of the parameter �q · �g, the parameter S1 shows fast oscillatory behaviour and the
quadrature squeezing decays.
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5. Summary and conclusions

We studied the temporal evolution of quantum statistical properties of an interacting atom–
radiation system in the presence of a classical homogeneous gravitational field within the
framework of the Jaynes–Cummings model. According to the equivalence principle the
influence of a homogeneous classical gravity field on the atom moving in a radiation field can
be simulated by constant acceleration. This means that our system is physically equivalent
to the situation where a two-level atom is at rest or moving with constant velocity relative
to an inertial system and the laboratory with the radiation field attached to it moves with
constant acceleration. To analyse the dynamical evolution of the atom–radiation system, we
presented a quantum treatment of the internal and external dynamics of the atom based on an
alternative su(2) dynamical algebraic structure. By solving the Schrödinger equation in the
interaction picture, we found the evolving state of the system by which the influence of the
classical gravity field on the dynamical behaviour of the atom–radiation system was explored.
Assuming that initially the radiation field has been prepared in a coherent state and the two-
level atom has been prepared in a coherent superposition of the excited and ground states,
we discussed the influence of gravity on the collapses and revivals of the atomic population
inversion, atomic dipole squeezing, atomic momentum diffusion, photon counting statistics
and quadrature squeezing of the radiation field. The results are summarized as follows:
(1) the Rabi-like oscillations in the atomic population inversion disappear with increase of the
gravitational field influence, (2) the dipole squeezing decays with increase of the parameter
�q · �g, (3) in the presence of the gravitational field, the atom can experience larger light-induced
forces during its interaction with the radiation field, (4) the multi-peak structure of the photon-
number distribution is destroyed with increase of the gravitational field influence, (5) with
increasing �q · �g, the sub-Poissonian behaviour of the cavity field is suppressed and it exhibits
super-Poissonian statistics and (6) the quadrature squeezing of the cavity field decays with
increase of the parameter �q · �g.
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